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Abstract: Superhydrophobic surfaces have attracted considerable interest due to their various functions and wide 
applications. Most of the existing methods for preparing superhydrophobic surfaces are only applicable to one or several 
specific substrate materials, which have the disadvantage of substrate-dependent. Here, an approach for the fabrication of 
substrate-independent superhydrophobic surfaces based on femtosecond laser-chemical hybrid processing is proposed. 
Micro/nanostructures are constructed on substrates via femtosecond laser direct writing technology, followed by 
modification with stearic acid. The laser-treated samples coated with stearic acid (LTx-SA, x presents different samples) 
surfaces have excellent superhydrophobic and self-cleaning properties. Moreover, it is worth noting that the LTx-SA 
surfaces remain stable superhydrophobicity after heating substrate from 20 ℃ to 100 ℃, washing substrate 10 times, and 
exposing substrate to air for 60 days. This work provides an efficient and facile strategy for achieving substrate-
independent superhydrophobic surfaces.
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1 Introduction

Superhydrophobicity is one of the significant 

wettability of solid surfaces. Generally, 

superhydrophobic surfaces have both high 
roughness and low surface energy [1 − 2]. Water 
droplets appear spherical and easily roll on 
superhydrophobic surfaces with a water contact 
angle (WCA) greater than 150° and a sliding angle 
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(SA) less than 10° [3 − 5]. The above interesting 
phenomena endow superhydrophobic surfaces with 
various excellent application prospects, involving 
fields such as self-cleaning [6−8], anti-corrosion [9−
11], oil/water separation [12 − 15], and droplet 
manipulation [16 − 17]. In more detail, functional 
device surfaces are easily contaminated and 
corroded during operation, the performance of the 
device will be affected and damaged. With the 
combination of superhydrophobic surfaces and 
these functional devices, this problem can be 
effectively solved. Accumulated water droplets can 
carry away the dust on superhydrophobic surfaces 
while rolling, keeping their surface clean [18]. 
Moreover, the air layer acts like a mask on these 
surfaces, they realize anti-corrosion property by 
inhibiting direct contact between the substrate and 
corrosive substances [19−20]. The direct discharge 
of untreated oil-water mixtures will cause pipeline 
blockage and even environmental pollution. Under 
the action of gravity or magnetic field, 
superhydrophobic surfaces with superlipophilicity 
can adsorb oil and remove water from the oil-water 
mixture, thus achieving the goal of oil-water 
separation [21−23]. Meanwhile, these surfaces can 
also remove oily pollutants from water.

In recent years, superhydrophobicity has 
attracted extensive attention, many studies have 
proposed various methods for preparing 
superhydrophobic surfaces and conducted to 
fabricate them successfully. For example, 
MAYOUSSI et al [24] presented a facial way via 
3D printing to fabricate thin superhydrophobic 
membranes, which have adjustable porosity. The 
obtained superhydrophobic membranes could be 
used in fields such as oil/water separation and 
salvinia layers exploration. ZHANG et al [25] 
developed a superhydrophobic ZnO/Cu-
ZnMOFs@SA composite coating on Zn surface, 
through one-step hydrothermal method, exhibiting 
good antibacterial and anticorrosion performance. 
GHASEMLOU et al [26] fabricated lotus-inspired 
superhydrophobic surfaces by soft-imprinting 
lithography and spin-coating approaches. However, 
these mentioned preparation superhydrophobic 
surface methods suffer from complicated, time-
consuming, or substrate-dependent procedures. 
Hence, it is of great significance to explore a facial 
strategy to fabricate substrate-independent 

superhydrophobic surfaces with excellent stability.
Herein, we proposed femtosecond laser and 

chemical hybrid processing technology for 
achieving substrate-independent superhydrophobic 
surfaces. Femtosecond laser is used to construct 
micro/nanostructures on the substrate surface, 
increasing its roughness. Subsequently, stearic acid 
is coated on the laser-treated substrate via heating 
and curing in drying oven. Stearic acid in this 
process can effectively reduce the surface energy of 
the substrate, resulting in hydrophobicity 
improvement. The above preparation method is 
applicable to various substrates such as ceramic, 
titanium (Ti), silicon (Si), and quartz glass. The 
obtained laser-treated samples coated with stearic 
acid (LTx-SA, x presents different samples) all 
exhibit outstanding superhydrophobicity. 
Furthermore, after a series of tests, including 
heating or washing substrate, and long-term 
exposure of substrate to air, the superhydrophobicity 
of LTx-SA has not degraded, revealing good 
stability.

2 Experimental

2.1 Materials
The ceramic with an average thickness of        

1 mm was purchased from Jingwei Special 
Ceramics Co., Ltd. (Jiangsu, China). Ti, Si, and 
quartz glass were bought from local markets. Stearic 
acid was obtained from Xilong Science Co., Ltd. 
(Guangdong, China).

2.2 Fabrication of superhydrophobic surface
The method proposed in this work for 

preparing superhydrophobic surfaces is applicable 
to various substrates. Here, ceramics were selected 
as the main research substrate to introduce the 
detailed preparation process. The first step is 
femtosecond laser processing. The laser beam 
(wavelength of 1035 nm, pulse width of 350 fs) was 
generated by a commercial femtosecond fiber laser 
system (HR-Femto-IR-50-40B, Huaray, China). 
Through a two-mirror galvanometric scanner 
system (basiCube 10, Scanlab, Germany) with an     
F-Theta lens (focused length of 125 mm), the laser 
beam was concentrated on the ceramic surface, 
which scanned along the X-direction first and then 
the Y-direction. The laser power, scanning speed, 
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and scanning interval were set at 3.64 W, 50 mm/s, 
and 15 μm, respectively. Next, the stearic acid was 

placed on drying oven (101-1BS, Super Instrument, 

China) at 150 ℃ for 15 s. Finally, the laser-treated 

sample coated with a layer of melted stearic acid 
was vertically placed on drying oven at 240 ℃ for 

20 min, and the LTC-SA surface was obtained.

2.3 Instruments and characterization

The different microstructures of various 

samples surfaces were characterized by using a field 

emission scanning electron microscope (SEM, 

MIRA3 LMU, Tescan, Czech Republic). The 

elemental compositions and maps were taken by an 

energy dispersive X-ray spectroscopy (EDS, Tescan, 

Czech Republic). The 3D morphology and cross-

sectional profiles were investigated by a laser 
confocal microscope (LCM; Axio LSM700, Zeiss, 

Germany). WCA was measured by a contact angle 

measurement system (SDC-200S, Shengding 

Precision, China).

3 Results and discussion

3.1 Surface fabrication

The substrate-independent superhydrophobic 
surfaces were simply prepared by femtosecond laser-

chemical hybrid process. As schematically 

illustrated in Figure 1(a), femtosecond laser direct 

writing technology was chosen as the first step to 

ablate substrates because of its high precision, 

simple fabrication process, and high efficiency, 

which is suitable to produce micro/nanostructures 

on different substrates [27−38]. Then, a drying oven 

was employed to melt stearic acid and adhere it to 

laser-treated substrates. After keeping samples in the 

Figure 1 Fabrication of substrate-independent superhydrophobic surfaces: (a) Schematic diagram for fabrication of 
substrate-independent superhydrophobic surfaces; (b) Photos of the water droplets placed on the Pristine ceramic, Ti, Si, 
and quartz glass, respectively; (c) Optical photos and static contact angles of the water droplets placed on the LTC-SA, 
LTT-SA, LTS-SA, and LTQ-SA, respectively; (d) Comparison of WCAs on pristine and treated samples surfaces;          
(e) Comparison between our proposed method and previously reported other preparation methods for superhydrophobic 
surfaces
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drying oven at 240 ℃ for 20 min, the LTx-SA 
surfaces were achieved successfully. In this work, 
four kinds of materials including ceramic, Ti, Si and 
quartz glass were selected as substrates to fabricate 
superhydrophobic surfaces. Pristine ceramic, Ti, Si, 
and quartz glass all exhibited hydrophilicity     
(Figure 1(b)). Interestingly, the wettability of these 
four substrate materials has been transformed from 
hydrophilicity to superhydrophobicity through 
femtosecond laser processing and stearic acid 
modification. It was obviously seen that the water 
droplets were almost spherical shape on the LTC-
SA, LTT-SA, LTS-SA and LTG-SA surfaces    
(Figure 1(c)). The WCAs of four pristine       
samples were ~22.3° , ~50.9° , ~60.4° and ~49.5° , 
respectively. By comparison, the WCAs of four 
treated samples were ~152.5°, ~158.6°, ~163.5° and 
~161.0° , respectively. We further compared the 
proposed process with other previously reported 
work about superhydrophobic surfaces preparation 
methods [39−41]. Our proposed fabrication process 
was brief and efficient. More importantly, the 
preparation method had superiority substrate-
independent aspects (Figure 1(e)).

3.2 Characterization of surface morphology
Morphology and chemical composition of solid 

surfaces are the decisive factors for their wettability 
[42−45]. In order to explore the superhydrophobic 
mechanism of the four treated samples, we 
employed the scanning electron microscope (SEM) 
to observe micro/nanostructures on the four treated 
samples. Compared to the four smooth and flat 
pristine samples, numerous porous micro/
nanostructures were uniformly distributed on 
corresponding treated samples, resulting in coarser 
surfaces. However, from high magnification SEM 
images, it was clearly found that there were some 
differences in the micromorphology of these treated 
samples. Specifically, the LTC-SA surface was 
coverd with dense hierarchical coral-shape micro/
nanostructures (Figure 2(a)). The morphology of 
LTT-SA and LTS-SA surfaces was composed of 
tightly packed particles with a particle size of 6.25 
and 12.5 μm (Figures 2(d), 2(g)). There were 
various nanowires and nanocavities evenly coated 
on the LTQ-SA surface (Figure 2(j)). Furthermore, 
the four treated samples were also analyzed using 

energy dispersive X-ray spectroscopy (EDS) to 
verify the composition of chemical elements. 
Carbon (C) and oxygen (O) elements were 
homogeneously distributed on the surfaces of the 
four treated samples, indicating the existence of 
stearic acid (Figures 2(b), (e), (h) and (k)).

The contents of aluminum (Al), C, O elements 
on the LTC-SA surface were 28.72%, 9.72%, 
61.56 %, respectively (Figure 2(c)). The content of 
Ti, C, O elements on the LTT-SA surface were 
41.68%, 4.48%, 53.84%, respectively (Figure 2(f)). 
Both LTS-SA and LTQ-SA surfaces contained 
silicon (Si) element with the content of 42.02% and 
24.31% (Figures 2(i) and (l)). The above 
characterization results validated that femtosecond 
laser processing and stearic acid modification could 
synergistically improve surface roughness and 
reduce surface energy to enhance surface 
hydrophobicity effectively.

The laser confocal microscope (LCM) was 
further carried out to characterize the 3D 
topography and cross-sectional micro profile of the 
LTC-SA, LTT-SA, LTS-SA, and LTQ-SA surfaces. 
As shown in Figures 3(a) − (d), the four treated 
sample surfaces were all very rough. Consistent 
with the results of SEM images, it was apparently 
observed that the hierarchical micro/nanostructures 
were regularly covered on these surfaces. The depth 
of their hierarchical micro/nanostructures were 5 −  
15 μm. During the process of femtosecond laser-
chemical hybrid treatment, the hierarchical micro/
nanostructures contributed to increase the contact 
area between melted stearic acid and substrates, 
promoting the decrease of surface energy. As a 
result, the superhydrophobicity of surfaces would be 
further enhanced.

3.3 Characterization of surface wettability
To confirm prepared surfaces with 

superhydrophobicity, we selected LTC-SA surface 
as representative to conduct various wettability tests 
on it. For example, a water droplet was suspended 
from a microsyringe and slowly moved downwards. 
When the droplet contacted with the LTC-SA 
surface, it was slightly deformed. Subsequently, the 
droplet left the surface as the microsyringe rising, it 
restored initial shape (Figure 4(a)). Meanwhile, a 
water droplet can readily slide down the LTC-SA 
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surface with a sliding angle of 3° (Figure 4(b)). A 

high-speed camera was employed to capture the 
dynamic process of a water droplet impacting on the 

LTC-SA surface. As shown in Figure 4(c), the 
droplet experienced four stages of falling, 

spreading, retracting, and rebounding within 70 ms. 

Figure 2 SEM and EDS characterization: SEM images of (a) LTC-SA, (d) LTT-SA, (g) LTS-SA, and (j) LTQ-SA, 
respectively. EDS and elemental mappings of (b, c) LTC-SA, (e, f) LTT-SA, (h, i) LTS-SA, and (k, l) LTQ-SA, 
respectively
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The above tests all demonstrated that the LTC-SA 

surface has excellent superhydrophobicity. We 

further used chalk powder to simulate dust and 

sprinkled it on the LTC-SA surface. It was clearly 

observed that the dust can be easily carried away by 

water droplets, maintaining the surface clean 

(Figure 4(d)). The result displayed outstanding self-

cleaning performance of the LTC- SA surface.

Figure 3 LCM characterization: 3D topography and cross-sectional micro profile of (a) LTC-SA, (b) LTT-SA, (c) LTS-
SA, and (d) LTQ-SA, respectively
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The stability of superhydrophobic surface is 
crucial for its practical applications [46 − 47]. 
Therefore, a range of experiments including heating 
stability, washing stability, and long-term air 
exposure tests were conducted on the LTC-SA 
surface to evaluate its durability. The LTC-SA 
surface was placed on a hot stage with temperature 

increasing from 20 ℃ to 100 ℃ . WCAs have 
basically not changed, which were still greater than 
150º, indicating good heat resistance performance of 
LTC-SA surface (Figure 4(e)). After washing the 
LTC-SA surface 10 times by water, there was no 
change in superhydrophobicity of the surface 
(Figure 4(f)). Results showed that LTC-SA surface 

Figure 4 Wettability and stability characterization: (a) Dynamical adhesive behaviors of a water droplet contacting and 
leaving the LTC-SA surface; (b) Pictures of a water droplet sliding (~3° ) on the LTC-SA surface; (c) Sequential 
photographs of water impact on the LTC-SA surface; (d) Self-cleaning effect of the LTC-SA surface; (e) Heating stability 
test of the LTC-SA surface; (f) Washing stability test of the LTC-SA surface; (g) Long-term air exposure test of the LTC-
SA surface
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has positive wash resistance function. Moreover, the 
LTC-SA surface was expoed to air for 60 days, 
WCA values of water droplet on the surface 
substantially presented consistent every day, 
verifying its air stability (Figure 4(g)). Above all, 
the superhydrophobicity and stability of the LTC-SA 
surface is outstanding.

4 Conclusions

In summary, fabrications of superhydrophobic 
surfaces on various substrates are achieved by 
hybrid femtosecond laser direct writing technology 
and stearic acid treatment. Femtosecond laser 
processing produces numerous hierarchical micro/
nanostructures on the substrate that enhance its 
roughness. The laser-treated substrate is further 
modificated with stearic acid to reduce surface 
energy. The synergistic effect of these two 
preparation processes endows the substrate surface 
with excellent superhydrophobicity. Furthermore, 
the as-prepared superhydrophobic surfaces have 
remarkable stability. Through heating or washing 
superhydrophobic surface, and exposing 
superhydrophobic surface to air, there is no change 
in wettability of the superhydrophobic surface 
essentially. We expect that our work may provide 
some insights into designing superhydrophobic 
surface on various substrates and further promoting 
the development of superhydrophobic surface 
preparation field.
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飞秒激光-化学混合制备多基底超疏水表面

摘要摘要：：超疏水表面因具有多种功能和广泛的应用引起了人们极大的兴趣。目前制备超疏水表面的方法

大多只适用于一种或几种特定的基底材料，具有依赖基底的缺点。本文提出了一种基于飞秒激光-化学

混合加工制备与基底无关的超疏水表面的方法。通过飞秒激光直接写入技术在基底上构建出微/纳米结

构，然后用硬脂酸改性。硬脂酸涂覆激光处理后的样品(LTx-SA，x表示不同的样品)表面具有优异的超

疏水和自清洁性能。此外，值得注意的是，将基底从20 ℃加热到100 ℃，或清洗基板10次，或将基

板暴露在空气中60 d后，LTx-SA表面仍然保持稳定的超疏水特性。这项工作为制备与基底无关的超疏

水表面提供了一种有效而简单的策略。

关键词关键词：：飞秒激光；硬脂酸；多基底；超疏水表面
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